Home / Expert Answers / Calculus / use-the-given-graph-of-the-function-y-f-x-to-find-the-following-quantities-if-they-exist-pa901

(Solved): Use the given graph of the function \( y=f(x) \) to find the following quantities, if they exist. ( ...




Use the given graph of the function \( y=f(x) \) to find the following quantities, if they exist.
(a) \( \lim _{x \rightarrow
Recall \( \lim _{x \rightarrow a} f(x) \) exists tr and onty if \( \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{-}} f
(a) \( \quad \lim _{x \rightarrow-5} f(x) \)
Recall \( \lim _{x \rightarrow a} f(x) \) exists if and only if \( \lim _{x \rig
Use the given graph of the function \( y=f(x) \) to find the following quantities, if they exist. (a) \( \lim _{x \rightarrow-5} f(x) \) (b) \( \lim _{x \rightarrow-2^{-}} f(x) \) (c). \( \lim _{x \rightarrow-2^{+}} f(x) \) (d) \( \lim _{x \rightarrow-2} f(x) \) (e) \( f(-2) \) Recall \( \lim _{x \rightarrow a} f(x) \) exists tr and onty if \( \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{-}} f(x) \). Also recall \( \lim _{x \rightarrow e} f(x)=L \) If the values of \( f(x) \) can be made atbltrarily dose to \( L \) by taking \( x \) sufficiently close to a for \( x< \) a. Similarly, lim \( f(x)=L \) if the values of \( f(x) \) can be made arbitrarity cloce to 2 by taking \( x \) sufficiently close to a for \( x> \). Using the graph, find the values (if they exist) of \( \lim _{x \rightarrow-5^{+}} f(x) \) and \( \operatorname{llm}_{x \rightarrow-5^{-}} f(x) \). (If a limit does' not exist, enter DNE) \( \lim _{x \rightarrow-5^{-}} f(x)= \) \( \lim _{x \rightarrow-3^{+}} f(x)= \) 5ince these limits (a) \( \quad \lim _{x \rightarrow-5} f(x) \) Recall \( \lim _{x \rightarrow a} f(x) \) exists if and only if \( \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x) \) Also recall \( \lim _{x \rightarrow a^{-}} f(x)=L \) if the values of \( f(x) \) can be made arbit made arbitrarily close to \( L \) by taking \( x \) sufficiently close to \( a \) for Using the graph, find the values (if they exist) of \( \lim _{x \rightarrow-5^{+}} f(x) \) an \[ \begin{array}{l} \lim _{x \rightarrow-5^{-}} f(x)= \\ \lim _{x \rightarrow-5^{+}} f(x)= \end{array} \] Since these limits \[ \lim _{x \rightarrow-5} f(x)= \]


We have an Answer from Expert

View Expert Answer

Expert Answer


We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe