Home / Expert Answers / Other Math / transform-the-given-initial-value-problem-into-an-algebraic-equation-for-y-mathcal-l-y-pa884

(Solved): Transform the given initial value problem into an algebraic equation for \( Y=\mathcal{L}\{y\} \) ...



Transform the given initial value problem into an algebraic equation for \( Y=\mathcal{L}\{y\} \) in the \( s \)-domain. Then

Transform the given initial value problem into an algebraic equation for \( Y=\mathcal{L}\{y\} \) in the \( s \)-domain. Then find the Laplace transform of the solution of the initial value problem. \[ \begin{array}{l} y^{\prime \prime}+3 y=2 e^{-2 t} \sin (2 t), \\ y(0)=2, \quad y^{\prime}(0)=-2 \end{array} \] \[ \begin{array}{l} \mathfrak{L}\{y\}=\frac{1}{s^{2}+3}\left[\frac{4}{\left((s+2)^{2}+4\right)}+2 s\right] \\ \mathfrak{L}\{y\}=\frac{1}{s^{2}+3}\left[\frac{4}{\left(s^{2}+4\right)}+2 s-2\right] \\ \mathfrak{L}\{y\}=\frac{1}{s^{2}+3}\left[\frac{2 s}{\left(s^{2}+4\right)}-2 s+2\right] \\ \mathfrak{Q}\{y\}=\frac{1}{s^{2}+3}\left[\frac{4}{\left((s+2)^{2}+4\right)}-2 s+2\right] \\ \mathfrak{L}\{y\}=\frac{1}{s^{2}+3}\left[\frac{4}{\left((s+2)^{2}+4\right)}+2 s-2\right] \end{array} \]


We have an Answer from Expert

View Expert Answer

Expert Answer


Given initial value problem y?+3y=2e?2tsin?(2t),y(0)=2,y?(0)
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe