Home / Expert Answers / Other Math / ress-as-a-single-logarithm-with-a-coefficient-of-1-log-left-frac-x-a-right-2-log-left-pa469

(Solved): ress as a single logarithm with a coefficient of 1: \( \log \left(\frac{x}{a}\right)+2 \log \left(\ ...




ress as a single logarithm with a coefficient of 1: \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \
ress as a single logarithm with a coefficient of 1: \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right) \) a. \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right)=\log \left(\frac{x y^{2} z^{3}}{a b^{2} c^{3}}\right) \) b. \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right)=\log \left(\frac{x^{2} y^{2} c^{3}}{a^{3} b^{2} z^{3}}\right) \) C. \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right)=\log \left(\frac{x y^{2} c^{\frac{1}{3}}}{a b^{2} z^{\frac{1}{3}}}\right) \) d. \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right)=\log \left(\frac{x y^{3} c^{2}}{a b^{3} z^{2}}\right) \) \( \log \left(\frac{x}{a}\right)+2 \log \left(\frac{y}{b}\right)-3 \log \left(\frac{z}{c}\right)=\log \left(\frac{x y^{2} c^{3}}{a b^{2} z^{3}}\right) \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Given: [log?(xa)+2log?(yb)]?3log?(zc) [lo
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe