Home /
Expert Answers /
Calculus /
evaluate-the-following-integral-using-trigonometric-substitution-int-frac-d-x-sqrt-49-x-2-pa638
(Solved): Evaluate the following integral using trigonometric substitution. \[ \int \frac{d x}{\sqrt{49-x^{2} ...
Evaluate the following integral using trigonometric substitution. \[ \int \frac{d x}{\sqrt{49-x^{2}}} \] What substitution will be the most helpful for evaluating this integral? A. \( x=7 \tan \theta \) B. \( x=7 \sin \theta \) C. \( x=7 \sec \theta \) Rewrite the given integral using this substitution. \[ \int \frac{d x}{\sqrt{49-x^{2}}}=\int 1 \quad d \theta \] (Type an exact answer.) Evaluate the integral. \[ \int \frac{d x}{\sqrt{49-x^{2}}}= \] (Type an exact answer.)