(Solved): \( .2 \) Simplify the following Boolean expressions to a minimum number of literals: (a) \( x y+x y ...
\( .2 \) Simplify the following Boolean expressions to a minimum number of literals: (a) \( x y+x y^{\prime} \) (b) \( (x+y)\left(x+y^{\prime}\right) \) (c) \( x y z+x^{\prime} y+x y z^{\prime} \) (d)* \( (x+y)^{\prime}\left(x^{\prime}+y^{\prime}\right)^{\prime} \) (e) \( \left(a+b+c^{\prime}\right)\left(a^{\prime} b^{\prime}+c\right) \) (f) \( a^{\prime} b c+a b c^{\prime}+a b c+a^{\prime} b c^{\prime} \) 4 Reduce the following Boolean expressions to the indicated number of literals: (a)* \( x^{\prime} y^{\prime} z^{\prime}+y+x y^{\prime} z^{\prime} \) to two literals (b) \( x^{\prime} y\left(x^{\prime}+z^{\prime}\right)+x^{\prime} y+x y z \quad \) to three literals (c) * \( (x+y z)^{\prime}+\left(x+y^{\prime} z^{\prime}\right)^{\prime} \quad \) to one literal (d) \( \left(w^{\prime}+x\right)(w+y)\left(x^{\prime}+y\right)(w+x y z) \) to four literals (e) \( w x y^{\prime} z^{\prime}+w y^{\prime}+w x^{\prime} y^{\prime} z^{\prime} \quad \) to two literals