Home / Expert Answers / Calculus / 1-point-convert-the-integral-i-int-0-2-sqrt-2-int-y-sqrt-4-y-2-e-8-x-2-8-pa792

(Solved): (1 point) Convert the integral \[ I=\int_{0}^{2 / \sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} e^{8 x^{2}+8 ...




(1 point) Convert the integral
\[
I=\int_{0}^{2 / \sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} e^{8 x^{2}+8 y^{2}} d x d y
\]
to polar
(1 point) Convert the integral \[ I=\int_{0}^{2 / \sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} e^{8 x^{2}+8 y^{2}} d x d y \] to polar coordinates, getting \[ \int_{C}^{D} \int_{A}^{B} h(r, \theta) d r d \theta \] where \[ h(r, \theta)= \] \( A= \) \( B= \) \( C= \) \( D= \) and then evaluate the resulting integral to get \( I= \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Convert the integral I=?022?04?y2e8x2+8y2dxdy to polar coordinates , getting ?CD?ABh(r,?)drd(?) then find all A,B,C,D and h(r,?)
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe