Home / Expert Answers / Trigonometry / 1-green-establish-the-identity-cot-2-theta-frac-cot-2-theta-1-2-cot-theta-choos-pa945

(Solved): 1 green Establish the identity. \[ \cot (2 \theta)=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \] Choos ...



1 green

Establish the identity.
\[
\cot (2 \theta)=\frac{\cot ^{2} \theta-1}{2 \cot \theta}
\]
Choose the sequence of steps below tha
Establish the identity. \[ \cot (2 \theta)=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \] Choose the sequence of steps below that verifies the identity. A. \( \cot (2 \theta)=\frac{1}{\tan (20)}=\frac{1-\tan \theta}{2 \tan ^{2} \theta}=\frac{1-\frac{1}{\cot \theta}}{\frac{2}{\cot ^{2} \theta}}=\frac{\cot \theta-1}{\cot \theta} \cdot \frac{\cot ^{2} \theta}{2}=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \) B. \( \cot (2 \theta)=\frac{1}{\tan (20)}=\frac{1+\tan ^{2} \theta}{\tan \theta}=\frac{1+\frac{1}{\cot ^{2} \theta}}{\frac{2}{\cot \theta}}=\frac{\cot ^{2} \theta+1}{\cot ^{2} \theta} \cdot \frac{\cot \theta}{2}=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \) C. \( \cot (2 \theta)=\frac{1}{\tan (20)}=\frac{1-\tan ^{2} \theta}{2 \tan \theta}=\frac{1-\frac{1}{\cot ^{2} \theta}}{\frac{2}{\cot \theta}}=\frac{\cot ^{2} \theta-1}{\cot ^{2} \theta} \cdot \frac{\cot \theta}{2}=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \) D. \( \cot (2 \theta)=\frac{1}{\tan (2 \theta)}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{\frac{2}{\cot \theta}}{1-\frac{1}{\cot ^{2} \theta}}=\frac{2}{\cot \theta} \cdot \frac{\cot ^{2} \theta-1}{\cot ^{2} \theta}=\frac{\cot ^{2} \theta-1}{2 \cot \theta} \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Solving the identity from l
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe